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Introduction

I Whole brain functional connectivity (FC) analyses require specifying the functionally homogeneous
regions of interest (ROIs) to be analyzed.
. Hand placed ROIs suffer from experimentor bias and error.
. ROI atlases may not correctly describe functional segregation of the brain.
. Most clustering methods (ICA, SOM, etc.) identify ”networks”; this smooths out detail about the

interaction between regions.

I We use spatially constrained n-cut spectral clustering to identify spatially coherent and functionally
homogeneous ROIs for FC analyses.

I Different methods for measuring similarity between voxels and combining data across subjects to
perform group-level clustering are compared.

I We also explore different methods for estimating the optimal number of clusters and investigate
trade-offs associated with this choice.

Methods

Subjects
I 41 healthy volunteers participated in accordance with IRB Policy (18F, age 28.9 +/- 7.2).

Scanning
I 3.0T Siemens Magnetom TIM Trio using 12-channel head matrix.

I Resting state data were acquired with a Z-SAGA sequence [1] to minimize susceptibility artifacts.
. TR/TE1/TE2/FA/FOV = 3000 ms/30 ms/66 ms/90◦/220 mm

I 150 images acquired in thirty 4-mm axial slices, in plane resolution 3.44 mm x 3.44 mm, 7 min scan.

I Subjects were instructed to fixate on a point while ”clearing their minds of any specific thoughts”.

Preprocessing
I Functional scans were slice timing corrected, motion corrected, written into MNI space at 4 mm x 4

mm x 4 mm resolution and spatially smoothed with a 6-mm FWHM Gaussian using SPM5.

I Data were restricted to gray matter, de-noised by regressing out motion parameters, CSF and WM
time-courses and bandpass filtered 0.009 Hz < f < 0.08 Hz.

Spatially Constrained Normalized Cut (ncut) Clustering

I Represent data as an undirected weighted similarity graph, G = (V ,E ).
. Vertices, V , correspond to voxels.
. Edges, E , connect two voxels and are weighted by the non-negative similarity, wij , between voxels.
. Spatial coherence is enforced by only connecting a voxel to other voxels in its 3D neighborhood [2].

I The algorithm cuts the graph into a specified number of clusters, K , such that intracluster similarity
is greater than intercluster similarity.

I Normalized cut ”balances” the sum of edge weights within each cluster.

I Practically, G is represented as an adjacency matrix W of edge weights, wij , and the ncut problem is
solved by linear algebra.

I Ncut clustering was performed using a Python implementation of the algorithm presented in [3].

Similarity can be measured in many ways
I rt: Pearson correlation between voxel time-courses, threshold rt ≥ .5.

I rs: Pearson correlation between the FC maps generated by voxel time-courses, threshold rs ≥ .5.

Two methods for group level clustering
I Average subject specific W matrices, and cluster the results.

I Cluster each individual, combine the results, and cluster again.
. After clustering each subject, construct an affinity matrix A, where entries aij = 1 if voxels i and j

are in the same cluster, aij = 0 otherwise.
. Average affinity matrices across subjects, and perform ncut clustering on the resulting matrix.

Performance Metrics

LOOCV Reproducibility
I Calculate the similarity between the clustering result from a single subject’s data to the result of

group level clustering with that subject excluded.

I Variation of Information
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Cluster Homogeneity
I Modified Silhouette
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Accuracy of Representation
I ROIs chosen in M1, V1, and vPCC to generate FC maps of visual, motor, and default mode networks.

I Pearson correlation calculated between voxel-wise FC maps and cluster-wise FC maps for each
subject and various values of K .

I Also performed for the Tailaraich and Tournoux (TT)[4], Automated Anatomic Labeling (AAL)[5],
Harvard-Oxford (HO)[6], and Eickhoff-Zilles (EZ)[7] ROI atlases.

Results

Figure 1: Estimating the optimal number of clusters

Figure 2: Examples of results for different levels of clustering.

Figure 3: Similarity between voxel-wise FC maps, clustered FC maps, and FC maps generated using anatomical atlases. The
horizontal gray bars represents the mean +/- one standard deviation for the best performing anatomical atlas.

Figure 4: Group averaged default mode network FC maps
for voxel, clustering with K = 180, TT and AAL atlases.

I As shown in figure 1 cluster improves as K
increases, but reproducibility degrades, rt with
two-level group clustering has the best
reproducibility.

I In figure 2 results from rt and rs are similar,
K = 50 is underclustered, and the small
clusters at K = 1000 reduce interpretability.

I Figure 3 shows that the accuracy of
representation improves with K , clustering
outperforms anatomical atlases for K > 100.

I The anatomical atlases perform better for
motor and visual networks than they do for the
default mode network.

I Figure 4 illustrates that the AAL and TT
atlases do not accurately represent the anterior
cingulate or frontal cortex components of the
default mode network, K = 180 captures most
of the detail of the voxel analysis.

Conclusion

I Spatially constrained spectral clustering is capable of identifying functionally homogeneous and
spatially coherent ROIs for FC analysis.

I Results generated using rt outperform rs and the two-level approach performs better than averaging,
although the differences are small, and the two-level approach is computationally expensive.

I No optimal choice of K was found, rather it can be chosen to optimize an experiment.

I Clustering results are capable of more accurately representing resting state networks than the
explored anatomically derived ROI atlases.
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